Exercise 35

Solve the Blasius problem of an unsteady boundary layer flow in a semi-infinite body of viscous fluid enclosed by an infinite horizontal disk at $z=0$. The governing equation and the boundary and initial conditions are

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\nu \frac{\partial^{2} u}{\partial z^{2}}, \quad z>0, t>0 \\
u(z, t) & =U t \quad \text { on } z=0, t>0 \\
u(z, t) & \rightarrow 0 \quad \text { as } z \rightarrow \infty, t>0 \\
u(z, t) & =0 \quad \text { at } t \leq 0, z>0
\end{aligned}
$$

Explain the significance of the solution.

Solution

The PDE is defined for $t>0$ and we have an initial condition, so the Laplace transform can be used to solve it. It is defined as

$$
\mathcal{L}\{u(z, t)\}=\bar{u}(z, s)=\int_{0}^{t} e^{-s t} u(z, t) d t,
$$

which means the derivatives of u with respect to z and t transform as follows.

$$
\begin{aligned}
\mathcal{L}\left\{\frac{\partial^{n} u}{\partial z^{n}}\right\} & =\frac{d^{n} \bar{u}}{d z^{n}} \\
\mathcal{L}\left\{\frac{\partial u}{\partial t}\right\} & =s \bar{u}(z, s)-u(z, 0)
\end{aligned}
$$

Take the Laplace transform of both sides of the PDE.

$$
\mathcal{L}\left\{u_{t}\right\}=\mathcal{L}\left\{\nu u_{z z}\right\}
$$

The Laplace transform is a linear operator.

$$
\mathcal{L}\left\{u_{t}\right\}=\nu \mathcal{L}\left\{u_{z z}\right\}
$$

Transform the derivatives with the relations above.

$$
s \bar{u}(z, s)-u(z, 0)=\nu \frac{d^{2} \bar{u}}{d z^{2}}
$$

From the initial condition, $u(z, t)=0$ for $t \leq 0$, we have $u(z, 0)=0$.

$$
\frac{d^{2} \bar{u}}{d z^{2}}=\frac{s}{\nu} \bar{u}(z, s)
$$

The PDE has thus been reduced to an ODE whose solution can be written in terms of exponential functions.

$$
\bar{u}(z, s)=A(s) e^{\sqrt{\frac{s}{\nu}} z}+B(s) e^{-\sqrt{\frac{s}{\nu}} z}
$$

In order to satisfy the condition that $u(z, t) \rightarrow 0$ as $z \rightarrow \infty$, we require that $A(s)=0$.

$$
\bar{u}(z, s)=B(s) e^{-\sqrt{\frac{s}{\nu}} z}
$$

To determine $B(s)$ we have to use the boundary condition at $z=0, u(0, t)=U t$. Take the Laplace transform of both sides of it.

$$
\begin{align*}
\mathcal{L}\{u(0, t)\} & =\mathcal{L}\{U t\} \\
\bar{u}(0, s) & =\frac{U}{s^{2}} \tag{1}
\end{align*}
$$

Setting $z=0$ in the formula for \bar{u} and using equation (1), we have

$$
\bar{u}(0, s)=B(s)=\frac{U}{s^{2}} .
$$

Thus,

$$
\bar{u}(z, s)=\frac{U}{s^{2}} e^{-\sqrt{\frac{s}{\nu}} z} .
$$

Now that we have $\bar{u}(z, s)$, we can get $u(z, t)$ by taking the inverse Laplace transform of it.

$$
u(z, t)=\mathcal{L}^{-1}\{\bar{u}(z, s)\}
$$

The convolution theorem can be used to write an integral solution for $u(z, t)$. It says that

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

The inverse Laplace transform of the individual functions are

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{U}{s^{2}}\right\} & =U t \\
\mathcal{L}^{-1}\left\{e^{-\sqrt{\frac{s}{\nu}} z}\right\} & =\frac{z}{2} \sqrt{\frac{1}{\pi \nu t^{3}}} e^{-\frac{z^{2}}{4 \nu t}},
\end{aligned}
$$

so by the convolution theorem, we have for $u(z, t)$

$$
u(z, t)=\int_{0}^{t} U(t-\tau) \frac{z}{2} \sqrt{\frac{1}{\pi \nu \tau^{3}}} e^{-\frac{z^{2}}{4 \nu \tau}} d \tau .
$$

Move the constants in front of the integral.

$$
u(z, t)=\frac{U z}{2 \sqrt{\pi \nu}} \int_{0}^{t} \frac{t-\tau}{\tau^{3 / 2}} e^{-\frac{z^{2}}{4 \nu \tau}} d \tau
$$

Split up the integral into two.

$$
u(z, t)=\frac{U z}{2 \sqrt{\pi \nu}}\left(t \int_{0}^{t} \frac{1}{\tau^{3 / 2}} e^{-\frac{z^{2}}{4 \nu \tau}} d \tau-\int_{0}^{t} \frac{1}{\tau^{1 / 2}} e^{-\frac{z^{2}}{4 \nu \tau}} d \tau\right)
$$

Make the substitution,

$$
\begin{aligned}
p & =\frac{z}{\sqrt{4 \nu \tau}} \rightarrow \tau=\frac{z^{2}}{4 \nu p^{2}} \\
d p & =-\frac{z}{4 \sqrt{\nu \tau^{3}}} d \tau \quad \rightarrow \quad-\frac{4 \sqrt{\nu}}{z} d p=\frac{1}{\tau^{3 / 2}} d \tau \quad \rightarrow \quad-\tau \frac{4 \sqrt{\nu}}{z} d p=-\frac{z}{\sqrt{\nu} p^{2}} d p=\frac{1}{\tau^{1 / 2}} d \tau
\end{aligned}
$$

in both integrals.

$$
u(z, t)=\frac{U z}{2 \sqrt{\pi \nu}}\left[t \int_{\infty}^{\frac{z}{\sqrt{4 \nu t}}} e^{-p^{2}}\left(-\frac{4 \sqrt{\nu}}{z} d p\right)-\int_{\infty}^{\frac{z}{\sqrt{4 \nu t}}} e^{-p^{2}}\left(-\frac{z}{\sqrt{\nu} p^{2}} d p\right)\right]
$$

Use the minus signs to switch the limits of integration and move the constants in front of the integrals.

$$
u(z, t)=\frac{U z}{2 \sqrt{\pi \nu}}\left[\frac{4 t \sqrt{\nu}}{z} \int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty} e^{-p^{2}} d p-\frac{z}{\sqrt{\nu}} \int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty} p^{-2} e^{-p^{2}} d p\right]
$$

Distribute the constant in front of the square brackets.

$$
u(z, t)=U t \cdot \frac{2}{\sqrt{\pi}} \int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty} e^{-p^{2}} d p-\frac{U z^{2}}{2 \nu \sqrt{\pi}} \int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty} p^{-2} e^{-p^{2}} d p
$$

We can write the solution in terms of the complementary error function erfc, a known special function, which is defined as

$$
\begin{equation*}
\operatorname{erfc} x=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-p^{2}} d p \tag{2}
\end{equation*}
$$

Rewrite the two integrals as follows.

$$
u(z, t)=U t \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{U z^{2}}{2 \nu \sqrt{\pi}} \int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty} \frac{d}{d p}\left(-\frac{1}{p}\right) e^{-p^{2}} d p
$$

Integrate the second integral by parts.

$$
u(z, t)=U t \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{U z^{2}}{2 \nu \sqrt{\pi}}\left[-\left.\frac{e^{-p^{2}}}{p}\right|_{\frac{z}{\sqrt{4 \nu t}}} ^{\infty}-\int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty}\left(-\frac{1}{p}\right) \frac{d}{d p} e^{-p^{2}} d p\right]
$$

Evaluate the derivative in the integrand and plug in the limits into the first term.

$$
u(z, t)=U t \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{U z^{2}}{2 \nu \sqrt{\pi}}\left(\frac{\sqrt{4 \nu t}}{z} e^{-\frac{z^{2}}{4 \nu t}}-2 \int_{\frac{z}{\sqrt{4 \nu t}}}^{\infty} e^{-p^{2}} d p\right)
$$

Use equation (2) to write the integral in terms of erfc.

$$
u(z, t)=U t \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{U z^{2}}{2 \nu \sqrt{\pi}}\left[\frac{\sqrt{4 \nu t}}{z} e^{-\frac{z^{2}}{4 \nu t}}-\sqrt{\pi} \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)\right]
$$

Simplifying this, we obtain

$$
u(z, t)=U t\left[\left(1+\frac{z^{2}}{2 \nu t}\right) \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{z}{\sqrt{\nu \pi t}} e^{-\frac{z^{2}}{4 \nu t}}\right] .
$$

In order to satisfy the last condition, $u(z, t)=0$ for $t \leq 0$, write the solution as a piecewise function.

$$
u(z, t)= \begin{cases}0 & t \leq 0 \\ U t\left[\left(1+\frac{z^{2}}{2 \nu t}\right) \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{z}{\sqrt{\nu \pi t}} e^{-\frac{z^{2}}{4 \nu t}}\right] & t>0\end{cases}
$$

$u(z, t)$ can be written compactly with the Heaviside function $H(t)$.

$$
u(z, t)=U t\left[\left(1+\frac{z^{2}}{2 \nu t}\right) \operatorname{erfc}\left(\frac{z}{\sqrt{4 \nu t}}\right)-\frac{z}{\sqrt{\nu \pi t}} e^{-\frac{z^{2}}{4 \nu t}}\right] H(t)
$$

The solution at the back of the book does not include $H(t)$ and hence is only valid for $t>0$.

